Specific interactions by the N-terminal arm inhibit self-association of the AraC dimerization domain.

نویسندگان

  • John E Weldon
  • Robert F Schleif
چکیده

Deletion of the regulatory N-terminal arms of the AraC protein from its dimerization domain fragments increases the susceptibility of the dimerization domain to form a series of higher order polymers by indefinite self-association. We investigated how the normal presence of the arm inhibits this self-association. One possibility is that arms can act as an entropic bristles to interfere with the approach of other macromolecules, thereby decreasing collision frequencies. We examined the repulsive effect of flexible arms by measuring the rate of trypsin cleavage of a specially constructed ubiquitin-arm protein. Adding an arm to ubiquitin or increasing its length produced only a modest repulsive effect. This suggests that arms such as the N-terminal arm of AraC do not reduce self-association by entropic exclusion. We consequently tested the hypothesis that the arm on AraC reduces self-association by binding to the core of the dimerization domain even in the absence of arabinose. The behaviors of dimerization domain mutants containing deletions or alterations in the N-terminal arms substantiate this hypothesis. Apparently, interactions between the N-terminal arm and the dimerization domain core position the arm to interfere with the protein-protein contacts necessary for self-association.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biophysical evidence of arm-domain interactions in AraC.

We report development of a method for the direct measurement of the interaction between the N-terminal arm and the remainder of the dimerization domain in the Escherichia coli AraC protein, the regulator of the l-arabinose operon. The interaction was measured using surface plasmon resonance to monitor the association between the immobilized peptide arm and the dimerization domain, truncated of ...

متن کامل

Strengthened arm-dimerization domain interactions in AraC.

Constitutive mutations were sought and found in the N-terminal arm of the Escherichia coli regulatory protein of the arabinose operon, AraC protein. A new mutation, N16D, was of particular interest. Asn-16 is not seen in the crystal structure of the AraC dimerization domain determined in the absence of arabinose, because the N-terminal arm 18 residues are disordered, but in the presence of arab...

متن کامل

Mapping arm-DNA-binding domain interactions in AraC.

AraC protein, the regulator of the l-arabinose operon in Escherichia coli has been postulated to function by a light switch mechanism. According to this mechanism, it should be possible to find mutations in the DNA-binding domain of AraC that result in weaker arm-DNA-binding domain interactions and which make the protein constitutive, that is, it no longer requires arabinose to activate transcr...

متن کامل

Constitutive mutations in the Escherichia coli AraC protein.

The Escherichia coli AraC protein represses and induces the araBAD operon in response to the absence or presence of l-arabinose. Constitutive mutations in the AraC gene no longer require the presence of l-arabinose to convert AraC from its repressing to its inducing state. Such mutations were isolated directly by virtue of their constitutivity or by their resistance to the nonmetabolizable arab...

متن کامل

DNA tape measurements of AraC

A new method for measuring distances between points in the AraC-DNA complex was developed and applied. It utilizes variable lengths of single-stranded DNA that connect double-stranded regions containing the two half-site binding sequences of AraC. These distances plus the protein interdomain linker distances are compatible with two classes of structure for the dimeric AraC gene regulatory prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 15 12  شماره 

صفحات  -

تاریخ انتشار 2006